Synthesis of Injectable Alginate Hydrogels with Muscle-Derived Stem Cells for Potential Myocardial Infarction Repair

نویسندگان

  • Rui Fang
  • Weiming Tian
  • Xiongbiao Chen
چکیده

Myocardial infarction (MI), caused by the occlusion of the left ventricular coronary artery, leads to the loss of cardiomyocytes and, potentially, heart failure. Cardiomyocytes in adult mammals proliferate at an extremely low rate and thus, a major challenge in MI treatment is supplementing exogenous cells and keeping them viable in MI areas. To address this challenge, injecting hydrogels encapsulating cells into MI areas, to compensate for the loss of cardiomyocytes, shows promise. This study synthesized two types of alginate hydrogels, based on self-crosslinking (SCL) and calcium ion crosslinking (Ca2+) in varying formulations. The hydrogels encapsulated living muscle-derived stem cells (MDSCs) and their performance was evaluated in terms of optimizing cell viability during the injection process, as well as the live/dead rate after long-term cultivation. The morphology of the hydrogel-encapsulated cells was characterized by scanning electronic microscopy (SEM) and live/dead cells were examined using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining) assay. The mechanical properties of the hydrogels were also determined via a rheometer, to identify their influence on cell viability during the injection process and with respect to long-term cultivation. The SCL hydrogel with a 0.8% alginate and 20% gelatin formulation resulted in the highest cell viability during the injection process, and the Ca2+ hydrogel composed of 1.1% alginate and 20% gelatin maintained the highest cell survival rate after two months in culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomaterial strategies for alleviation of myocardial infarction

World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impa...

متن کامل

Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair.

One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective ...

متن کامل

Are Stem Cells the next Therapeutic Tool for Heart Repair?

Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...

متن کامل

Injectable acellular hydrogels for cardiac repair.

Injectable hydrogels are being developed as potential translatable materials to influence the cascade of events that occur after myocardial infarction. These hydrogels, consisting of both synthetic and natural materials, form through numerous chemical crosslinking and assembly mechanisms and can be used as bulking agents or for the delivery of biological molecules. Specifically, a range of mate...

متن کامل

Pretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention

Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017